| 53 | 0 | 26 |
| 下载次数 | 被引频次 | 阅读次数 |
旨在探究猪肌肉发育的分子基础,基于前期进行的泛素化蛋白组学测序(4D-label泛素化测序),检测杜洛克猪和藏香猪腿肌样本的翻译后水平修饰,分析两品种猪骨骼肌中编码泛素化底物蛋白的锌指C3H1型蛋白(ZFC3H1)的差异性基因。通过UniPort、GeneCards、Ensembl数据库查询ZFC3H1蛋白质序列并进行生物信息学分析,使用PLAAC与PONDR进行相分离能力预测,最后利用ISwine和PigGTEx统计与脂肪发育及产肉性状相关的数量性状基因座(QTLs)的数量关系。结果:ZFC3H1蛋白为亲水蛋白,含有411个磷酸化位点及14个糖基化位点,不存在信号肽及跨膜区域,主要分布在细胞核上,二级结构预测结果显示α-螺旋、无规卷曲和延伸链分别占37.16%、62.33%、0.51%,与三级结构预测一致; ZFC3H1与微管相关蛋白TREX复合体亚基(MTREX)、PNN互作的丝氨酸/精氨酸富集蛋白(PNISR)、含锌指CCHC结构域蛋白7(ZCCHC7)、细胞色素c氧化酶组装因子(CMC1)、多聚腺苷酸结合蛋白核1(PABPN1)等蛋白之间存在互作;系统进化树显示,该基因与非洲野猪亲缘关系最近,同源性为99.8%;相分离能力预测及QTLs统计显示,ZFC3H1的蛋白质结构中存在类朊病毒结构的蛋白序列和9个内在无序区域(IDRs),同时该基因含有10个有价值的表达数量性状基因座(e QTLs),且基因附近有218个长链非编码RNA表达数量性状基因座(lncQTLs)。结论:本试验成功证明ZFC3H1可形成生物凝聚体并驱动液-液相分离,进而调控骨骼肌增殖。
Abstract:The aim of this study was to delve into the molecular basis of porcine muscle development. Based on the previous ubiquitination proteomics sequencing( 4D-label ubiquitination sequencing),the post-translational modifications of leg muscle samples from Duroc pigs and Tibetan pigs were detected,and the differential genes encoding the ubiquitinated substrate protein-zinc finger C3H1-type protein( ZFC3H1) in the skeletal muscles of the two pig breeds were analyzed. Then,the protein sequence of ZFC3H1 was queried using Uni Port,Gene Cards and Ensembl databases for bioinformatics analysis. Next,PLAAC and PONDR were used to predict the phase separation ability.Finally,ISwine and PigGTEx were utilized to count the quantitative relationship between QTLs related to fat and meat production traits. The results showed that ZFC3H1 was a hydrophilic protein,containing 411 phosphorylation sites and 14 glycosylation sites,with no signal peptide or transmembrane region,and it was mainly distributed in the nucleus. The secondary structure prediction results indicated that α-helix,random coil,and extended chain account for 37. 16%,62. 33%,and 0. 51%,respectively; which was consistent with the tertiary structure prediction. ZFC3H1 interacted with proteins such as icrotubule-associated protein TREX complex subunit( MTREX),peptidylprolyl cistrans isomerase N1 domain-containing protein( PNISR),zinc finger CCHC domain-containing protein 7( ZCCHC7),cytochrome c oxidase assembly factor( CMC1),and polyadenylate-binding protein nuclear 1( PABPN1). The phylogenetic tree showed that this gene had the closest genetic relationship with the African wild boar,with a homology of 99. 8%. The phase separation ability prediction and QTLs statistics showed that the protein structure of ZFC3H1 contained prion-like protein sequences and 9 intrinsically disordered regions( IDRs). Meanwhile,this gene contained 10 valuable expression quantitative trait loci( e QTLs),and there were 218 long non-coding RNA expression quantitative trait loci( lnc QTLs) near the gene. It was successfully proven here that the effector ZFC3H1 was able to form biological condensates and to drive liquid-liquid phase separation so as to regulate skeletal muscle proliferation.
[1] LI X,LU L,TONG X,et al. Transcriptomic profiling of meat quality traits of skeletal muscles of the Chinese indigenous Huai pig and Duroc pig[J]. Genes,2023,14(8):1548.
[2] ZHAO Y,LI J,LIU H,et al. Dynamic transcriptome profiles of skeletal muscle tissue across 11 developmental stages for both Tongcheng and Yorkshire pigs[J]. BMC Genom, 2015, 16(1):377.
[3] LIU Y,FU Y,YANG Y,et al. Integration of multi-omics data reveals cis-regulatory variants that are associated with phenotypic differentiation of eastern from western pigs[J]. Genet Sel Evol,2022,54(1):62.
[4] LI J,XIANG Y,ZHANG L,et al. Enhancer-promoter interaction maps provide insights into skeletal muscle-related traits in pig genome[J]. BMC Biol,2022,20(1):136.
[5]杨亚岚.瘦肉型和脂肪型猪产肉性状差异及其后代杂种优势形成的调控机制研究[D].北京:中国农业科学院,2017.
[6] YANG Y,YAN J,FAN X,et al. The genome variation and developmental transcriptome maps reveal genetic differentiation of skeletal muscle in pigs[J]. PLoS Genet,2021,17(11):e1009910.
[7] HYMAN A A,WEBER C A,JüLICHER F. Liquid-liquid phase separation in biology[J]. Annu Rev Cell Dev Biol,2014,30:39-58.
[8] PENG P H,HSU K W,WU K J. Liquid-liquid phase separation(LLPS)in cellular physiology and tumor biology[J]. Am J Cancer Res,2021,11(8):3766.
[9] BRANGWYNNE C P,ECKMANN C R,COURSON D S,et al.Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935):1729-1732.
[10] ALBERTI S,SAHA S,WOODRUFF J B,et al. A user's guide for phase separation assays with purified proteins[J]. J Mol Biol,2018,430(23):4806-4820.
[11] TRIPATHI S,MIYAKE T,KELEBEEV J,et al. TAZ exhibits phase separation properties and interacts with Smad7 and β-catenin to repress skeletal myogenesis[J]. J Cell Sci, 2022,135:jcs259097.
[12] WANG R,CHEN F,CHEN Q,et al. Myo D is a 3D genome structure organizer for muscle cell identity[J]. Nat Commun,2022,13:205.
[13] The Uni Prot Consortium. UniProt:the universal protein knowledgebase[J]. Nucleic Acids Res,2018,46(5):2699.
[14] ROMERO P,OBRADOVIC Z,DUNKER A K. Natively disordered proteins:functions and predictions[J]. Appl Bioinformatics,2004,3(2/3):105-113.
[15] LINDING R,JENSEN L J,DIELLA F,et al. Protein disorder prediction:implications for structural proteomics[J]. Structure,2003,11(11):1453-1459.
[16] LANCASTER A K,NUTTER-UPHAM A,LINDQUIST S,et al.PLAAC:a web and command-line application to identify proteins with prion-like amino acid composition[J]. Bioinformatics,2014,30(17):2501-2502.
[17] RIES R J,ZACCARA S,KLEIN P,et al. M6a enhances the phase separation potential of mRNA[J]. Nature, 2019, 571(7765):424-428.
[18] TENG J,GAO Y,YIN H,et al. A compendium of genetic regulatory effects across pig tissues[J]. Nat Genet,2024,56(1):112-123.
[19] FU Y,XU J,TANG Z,et al. A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model[J]. Commun Biol,2020,3(1):502.
[20] ZHANG W,TAN X,LIN S,et al. CPLM 4. 0:an updated database with rich annotations for protein lysine modifications[J]. Nucleic Acids Res,,2022,50(D1):D451-D459.
[21] SAFRAN M,ROSEN N,TWIK M,et al. The Gene Cards suite[M]//Practical Guide to Life Science Databases. Singapore:Springer Nature Singapore,2021:27-56.
[22] UniProt Consortium. UniProt:a worldwide hub of protein knowledge[J]. Nucleic Acids Res,2019,47(D1):D506-D515.
[23] MARTIN F J,AMODE M R,ANEJA A,et al. Ensembl 2023[J].Nucleic Acids Res,2023,51(D1):D933-D941.
[24]李健,刘亚星,李超程,等.猪泛素化因子的筛选及生物信息学分析[J].中国畜牧杂志,2024,60(5):147-154.
[25] KOTA D,PRASAD R,ZHOU H X. Adenosine triphosphate mediates phase separation of disordered basic proteins by bridging intermolecular interaction networks[J]. J Am Chem Soc,2024,146(2):1326-1336.
[26] WANG F,ZHANG Y. Physiology and pharmacological targeting of phase separation[J]. J Biomed Sci,2024,31(1):11.
[27] BORCHERDS W,BREMER A,BORGIA M B,et al. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation[J]. Curr Opin Struct Biol,2021,67:41-50.
[28] PICCHIARELLI G,WIENAND A,MEGAT S,et al. FUS controls muscle differentiation and structure through LLPS mediated recruitment of MEF2 and ETV5[J]. bioRxiv,2024. DOI:2024. 09.18. 613669.
[29] LIU X. Functions and regulatory mechanisms of ribosomal protein S27-like gene in skeletal muscle development[D]. Murdoch:Murdoch Univ,2024.
[30] TAO J,ZENG Y,DAI B,et al. Excess PrP(C)inhibits muscle cell differentiation via miRNA-enhanced liquid-liquid phase separation implicated in myopathy[J]. Nat Commun,2023,14(1):8131.
[31] FAKIM H,VANDE VELDE C. The implications of physiological biomolecular condensates in amyotrophic lateral sclerosis[J]. Semin Cell Dev Biol,2024,156:176-189.
[32] CONTRICIANI R E,DA VEIGA F C,DO AMARAL M J,et al.Dact1 is expressed during chicken and mouse skeletal myogenesis and modulated in human muscle diseases[J]. Comp Biochem Physiol Part B Biochem Mol Biol,2021,256:110645.
[33]汪瑞婷.骨骼肌特异转录调控因子Myo D通过相分离机制调控基因表达[D].北京:北京协和医学院,2019.
[34] TOMITA T,IEGUCHI K,COIN F,et al. ZFC3H1,a zinc finger protein,modulates IL-8 transcription by binding with celastramycin A,a potential immune suppressor[J]. PLoS One, 2014, 9(9):e108957.
[35] SILLA T,KARADOULAMA E,MA?KOSA D,et al. The RNA exosome adaptor ZFC3H1 functionally competes with nuclear export activity to retain target transcripts[J]. Cell Rep,2018,23(7):2199-2210.
[36] OGAMI K,RICHARD P,CHEN Y,et al. An Mtr4/ZFC3H1complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression[J]. Genes Dev,2017,31(12):1257-1271.
[37] WANG Y,FAN J,WANG J,et al. ZFC3H1 prevents RNA trafficking into nuclear speckles through condensation[J]. Nucleic Acids Res,2021,49(18):10630-10643.
[38] LI M,LI C,CHEN X,et al. Differential analysis of ubiquitin-proteomics in skeletal muscle of Duroc pigs and Tibetan fragrant pigs[J]. Front Vet Sci,2024,11:1455338.
[39] MYTIDOU C, KOUTSOULIDOU A, KATSIOLOUDI A, et al.Muscle-derived exosomes encapsulate myomiRs and are involved in local skeletal muscle tissue communication[J]. FASEB J,2021,35(2):e21279.
[40] IYER S R,SCHEIBER A L,YAROWSKY P,et al. Exosomes isolated from platelet-rich plasma and mesenchymal stem cells promote recovery of function after muscle injury[J]. Am J Sports Med,2020,48(9):2277-2286.
[41] DU M,EA C K,FANG Y,et al. Liquid phase separation of NEMO induced by polyubiquitin chains activates NF-κB[J]. Mol Cell,2022,82(13):2415-2426.
[42] CHOU M C, WANG Y H, CHEN F Y, et al. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly[J]. Mol Cell,2023,83(22):4123-4140.
[43] HEDTFELD M,DAMMERS A,KOERNER C,et al. A validation strategy to assess the role of phase separation as a determinant of macromolecular localization[J]. Mol Cell, 2024, 84(9):1783-1801.
基本信息:
DOI:
中图分类号:S828
引用信息:
[1]李云蕾,李明泽,李健,等.猪泛素化底物蛋白ZFC3H1的生物信息学与相分离能力分析及其对骨骼肌发育的影响[J].畜牧与兽医,2025,57(11):8-17.
基金信息:
兵团科技计划项目(KC2024CC007); 石河子大学高层次人才科研启动项目(2022ZK022);石河子大学创新合作专项(QS2025008);石河子大学成果转化与技术推广计划项目(2022032); 青年科学基金项目(32302718)